APPROVED FOR PUBLIC RELEASE:
DISTRIBUTION IS UNLIMITED

Management Sclence Research Report Number #601

DTIC

ELECTE
Balanced O, ¢ Matrices MAY 1 01994
Part II: Recognition Algorithm F

Michele Conforti'
Gérard Cornuéj ls2
AjJai Kapoor
Krisina Vuskovi

January 22, 1994

Dipartimento di Matematica Pura ed Applicata
Universita di Padova,

‘3,;?3?!];::2\1;;.7’ Italy Qg ”ﬁﬁi‘ﬁm‘l‘ m'm”?mmmz
Graduate School of Industrial Administration /ﬁgg "

Carneglie Mellon University
Schenley Park
Pittsburgh, PA 15213

This work was supported in part by National Science Foundation Grants Nos.
DDM-9201340 and DDM-9001705 and the Office of Naval Research grant
N00014-89-J-1063.

Management Sclence Research Group
Graduate School of Industrial Administration
Carnegie Mellon University
Pittsburgh, PA 15213

.
Lia.

€94 o 05 114




Abstract

In thls paper we give a polynomial time regocnition algorithm for

balanced O, * matrices. This algorithm is based on a decomposition

theorem proved in a companion paper.
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1 Introduction

In [2], Conforti, Cornuéjols and Rao prove a decomposition theorem for bal-
anced 0,1 matrices and they use it to obtain a polynomial time recognition
algorithm of these matrices. In this paper, using a similar approach, we give
a polynomial time recognition algorithm for balanced 0, +1 matrices, using a
decomposition result derived in the companion paper (1]. In this paper, as in
[1], we work on the signed bipartite graph representation of a 0,41 matrix.
All relevant notation can be found in [1].

The decomposition theorem [1] uses two types of edge cutsets, namely
2-joins and 6-joins, and a certain kind of node cutset. When we remove
the edges (nodes) of a cutset in a signed bipartite graph G, it is not true
in general that, if the resulting connected components are balanced, then G
is balanced. However we may be able to achieve this property by adding
a few nodes and edges to the connected components. In Section 2 we give
such a construction for the 2-joins and 6-joins. The situation for the node
cutset is more complicated and is dealt with in Section 3. In Section 4 we
give a polynomial time algorithm for identifying a 6-join and in Section 5 for
identifying a 2-join. In Section 6 we put all the pieces together and give a
polynomial algorithm for recognizing if a signed bipartite graph is balanced.

2 Edge Decompositions

Throughout this paper, we assume that G be a signed bipartite graph. The
sides of the bipartition are V¢ and V™ with m = |V"| and n = |V°|. The
length of a path P is the number of its edges and its weight w(P) is the sum
of its edge weights. Similarily we distinguish between the length and weight
of a cycle. If the weight of a cycle is 0 mod 4, we say that the cycle is quad,
otherwise it is unquad. By scaling G' at node u, we mean changing the sign
of the weights on all the edges incident with u.

Remark 2.1 Let G’ be a signed bipartite graph obtained from G by scaling
at node u. A cycle C is quad in G’ if and only if it is quad in G.

G is restricted balanced if all its cycles are quad. We have the following
version of Theorem 5.1 in [1].




Theorem 2.2 Let G be a signed bipartite graph. If G is balanced but not
restricted balanced then either the underlying graph is Ryo or G contains a
2-join, a 6-join or an extended star cutset.

2-Join Decomposition

Let E(Kgp)U E(KgF) be a 2-join and Ggg (Gpr) the union of the compo-
nents of G\ E(Kgp)U E(KEr) containing a node of B (a node of D). Recall
that, according to our definition of a 2-join in Part I [1], Ggg contains E
and Gpr contains F. When neither D U F nor B U F induces a biclique, we
construct the block G, from Ggg as follows:

e Add two nodes d and f, connected respectively to all nodes in B and
to all nodes in E.

e Let P, be a chordless path in Gpr connecting a node &' € D to a
node f' € F. If w(P;) = 0 mod 4 or w(P;) = 2 mod 4, nodes d and
f are connected by a path of length 4 cf weight 0 or 2 respectively. If
w(P;) = 1 mod 4 or w(P;) = 3 mod 4, nodes d and f are connected
by a path of length 5 of weight 1 or 3 respectively. Denote this path
by Py. Sign the edges between node d and the nodes in B exactly the
same as the corresponding edges between d’ and the nodes of B in the
original graph. Similarly, sign the edges between f and the nodes in E
exactly the same as the corresponding edges between f’ and the nodes
in E.

The block G is defined similarly from Gpp.

Remark 2.3 If E(Kgp) U E(KgF) is a 2-join and BU E (DU F) induces
a biclique, then BUE (DU F) is a biclique cutset of G.

Theorem 2.4 Let G; and G; be the blocks of the decomposition of the signed
bipartite graph G by a 2-join E(Kpp) U E(Kgr), such that neither BU E
nor DU F induces a biclique. If Kgp U Kgr is balanced, then G is balanced
if and only if both G, and G are balanced.

The following lemma is used in the proof of Theorem 2.4.

Lemma 2.5 Let G be a signed bipartite graph with no unquad hole of length
four. For every biclique Kgp in G, we can scale G on the nodes in BU D
so that every edge in E(Kpp) has weight +1.
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Proof: If |B| = 1 then we can scale on nodes in D to obtain the result.
Similarily, for |D| = 1.

We can assume |B| > 2 and [D| > 2. Let b € B and d € D. Scale at
nodes d' € D so that all edges (b,d’) have weight +1. Scale at nodes b’ € B
so that all edges (¥, d) have weight +1. Every &' € D\ {d} and V' € B {b}
induce a hole b,d,b,d', b of length four. By assumption this hole is quad.
Hence (¥, d’') must have weight +1. O

Remark 2.6 Let G be a signed bipartite graph with no unquad hole of length
4. By Lemma 2.5 there ezists a signed graph G', which is obtained from G
by a sequence of scalings, such that all the edges in E(Kpp)U E(KEgF) have
weight +1, since Kgp and Kgr are node disjoint.

Proof of Theorem 2.4: By Remark 2.6 we can assume that all the edges
in E(Kpgp) and E(KEgr) have weight +1. First we show that G, and G; are
balanced if G is balanced. Every hole H in G; corresponds to a hole H’ in
G, except for the case where H contains nodes d and f and no other nodes
of Py, and DU F is a biclique in G. The existence of such a biclique would
contradict our assumption. The hole H' has the same weight as H, since all
the edges of E(Kpp)U E(KEF) are all signed positive. Thus G; is balanced
if G is balanced. Similarly for G,.

Now assume that G, and G, are balanced, but G is not. Let H be an
unquad hole of G. If it contains no edge of Gpr, there exists a hole in G;
which is unquad. The same argument holds for Ggg.

Let H =V,d,Q2, f',¢',Q1,b where b € B,d' € D,f' € Fand ¢ € E
be an unquad hole in G. Since G, is balanced, w(Q,) and w(Py) are not
congruent modulo 4. But by defintion of a block, there exists a path P, from
d” € D to f” € F, such that w(P,) is congruent to w(Py) modulo 4. The
holes H, = d", P,, f", Py, b,d" and H; = d',Q., f', e, Py, b,d’ have distinct
weights modulo 4. Hence one of them must be unquad, contradicting our
assumption. O

6-Join Decomposition

Let Ay, ..., Ag be disjoint nonempty node sets in the signed bipartite graph G
such that the edges of the graph A induced by US_; A; form a 6-join. Let G35
be the union of the components of G\ E(A) containing a node in A;UA3U A5
and Ga4¢ the union of the components containing a node in A, U A4 U Aq.
We construct the block G, from Gia5 as follows:
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¢ Add node a; and edges between @, and all the nodes in A; and Aj,
node a4 and edges between a4 and all the nodes in A; and A5 and node
a¢ and edges between ag and all the nodes in A5 and A,.

o Pick any three nodes @), € Ay, a) € A4 and af € Ag and sign the
edges of G connected to a;,a4 and ag according to the signs of the
corresponding edges connected to aj, aj and ag.

Similarly, the block G is defined from Gag6.

Theorem 2.7 Let G, and G, be the blocks of the decomposition of the signed
bipartite graph G by a 6-join A = G(US_, A;) such that A is balanced. Then
G 1is balanced if and only if both Gy and G, are balanced.

We first prove the following lemma.

Lemma 2.8 If A does not contain an unquad hole, then there exists a signing
of G which is obtained by a sequence of scalings on the nodes of A, such that
for every biclique Ka,a,,,,t € {1,...,6} (where indices are taken modulo 6)
the edges in the biclique are all signed +1 or they are all signed -1.

Proof: By Lemma 2.5 we can sign all the edges in E(K4,4,), E(Ka,a,)
and FE(Ka,4,) to be +1. W.lo.g. let E(K4,4,) contain an edge signed +1
and another signed -1. Now there exist in A two holes of length 6 which
differ in weight by 2. Clearly one of these must be unquad contradicting our
assumption that A contains no unquad hole. O

Proof of Theorem 2.7: By Lemma 2.8 we can assume that for every
biclique K4, 4,,,,% € {1,...,6}, the edges of the biclique are all signed +1 or
they are all signed —1.

It follows from the definition of the blocks that G; and G, are induced
subgraphs of G and so are balanced if G is balanced.

Let H be an unquad hole of G. If it contains no edge of G246, there exists
a hole in G; which is unquad. The same argument holds for Gi3s.

Now we can assume that the hole has an edge in G135 and an edge in Gaqg.
Clearly H must have exactly four nodes in common with V(A) otherwise H
contains a chord.




-

~-———— -

la Odd Wheel 1b Short 3PC 1c Tent

Figure 1: Odd wheel, short 3-path configuration and tent

W.lo.g. let H = a}, P\, a,a}, P;,a),a] where aj € Ay, a) € Az, a) € A4
and af € As. Then either a;, Py, as,a¢,a1 or as, P,,a2,a3,a4 is an unquad
hole, otherwise by adding the weights of these disjoint holes and H, and
observing that H is unquad we obtain that ay, a2, as, a4, as, as, @) is an unquad
hole contradicting our assumption. O

3 Double Star Decomposition

A double staris a node set N(u)U N(v) where uv is an edge of the graph. Let
S be an extended star cutset or a double star cutset of G and G, ..., G} the
connected components of G\ S. We define the blocks of the decomposition to
be signed bipartite graphs Gi, ..., G where each of the blocks G; is obtained
by taking the induced signed subgraph on the node set V(G:)U S.

The extended star and double star decompositions are not balancedness
preserving, i.e. the blocks G,,...,Gi may be balanced even though the
signed bipartite graph G is not. For example the graphs of Figure 1 are
not balanced, but contain a double star cutset with resulting blocks that
are balanced. Our recognition algorithm for the class of balanced signed
bipartite graphs exploits the structure of signed bipartite graphs that are
not balanced. Conforti and Rao [3] and later Conforti, Cornuéjols and Rao
[2] have studied bipartite graphs that are not balanced. In the next section
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this study is extended to signed bipartite graphs.

If the signed bipartite graph G is decomposed recursively using extended
star decompositions on the blocks, we could end up using an exponential
number of steps in the decomposition. Our recognition algorithm uses double
star decompositions instead, for which we can prove that the number of steps
is polynomial.

Definition 3.1 A node u is said to be dominated if there ezists a node v,
distinct from u, such that N(u) C N(v). A graph is said to be undominated
if it contains no dominated nodes.

Lemma 3.2 [2] If an undominated bipartite graph contains an ertended star
cutset, then it contains a double star cutset.

3.1 Smallest Unquad Holes

Assume the signed bipartite graph G is not balanced and let H* be a smallest
(in length) unquad hole in G. By Remark 2.1 H* is a smallest unquad hole in
any signed graph obtained from G by a sequence of scalings. In this section
we study properties of strongly adjacent nodes to H*.

Definition 3.3 A node u strongly adjacent to a hole H in G is odd-strongly
adjacent if u has an odd number of neighbors in H. If u has an even number
of neighbors in H, then u is even-strongly adjacent. The sets A,(H) and
A (H) contain the odd-strongly adjacent nodes in H which belong to V™ and
Ve respectively.

We will now prove the following fundamental properties of the sets A,(H*)
and A.(H*) associated with a smallest unquad hole H*.

Property 3.4 Every even-strongly adjacent node to H* is a twin of a node
in H*.

Property 3.5 There erists a node z, € V" NV (H*) which is adjacent to all
the nodes in A.(H*).

Property 3.6 There ezists a node . € VSN V(H*) which is adjacent to all
the nodes in A,.(H*).




Conforti and Rao [3] prove the above properties for a bipartite graph
which is signed so that all of its edges have weight +1.

Proof of Property 3.4: Suppose u has an even number of neighbors,
Uy, Ugy... U2k, k > 21in H*. Let S;, ¢ = 1,2,...,2k be the sectors of
(H*,u) having nodes u;,u;4; as endnodes (where indices are taken modulo
2k).

By scaling of the graph at every node u; for which the edge uu; has weight
—1, we can obtain a graph in which all the spokes of (H*, u) have weight +1.
Now since H* is unquad, there is a sector, say S;, of weight 0 mod 4. Then the
cycle u, u;, S;, u;41, ¢ is an unquad hole of smaller length than H*. Hence if u
is an even-strongly adjacent node in H* it must have exactly two neighbors,
say u; and us. W.l.o.g the edges uu; and uu, have weight +1. Clearly the
two ujuz-subpaths of H* say P, and P,, are such that one of them is of
weight 0 mod 4 and the other is of weight 2 mod 4. Suppose P; is of weight
2 mod 4. Then P, must have length two for otherwise u,u, P, uz,u would
be an unquad hole of smaller length than H* . Hence u; and u; must have
a common neighbor, say «*, in H*. D

To prove Property 2.5 and Property 3.6 we need the following lemma.

Lemma 3.7 Ifu,v € A.(H*), then they have at least one common neighbor
in H*. Moreover in any sector of (H*,v), node u has either an even number
of neighbors, or exactly one neighbor adjacent to v.

Proof: First we show that u cannot have an odd number, greater than
one, of neighbors in any one sector of (H*,v). Suppose not. Let u have
an odd number of neighbors, greater than one in sector Si of (H*,v). Let
H = v,S5,v. Now (H,u) is an odd wheel, therefore this wheel contains an
unquad hole which must be of smaller length than H*. Hence u must have
either an even number or exactly one neighbor in any sector of (H*,v).

Next we show that if node u has exactly one neighbor in some sector
then this node is also adjacent to v. This in turn implies that at least one
node in H* is a neighbor of both u and v since node u has an odd number
of neighbors in H*.

Suppose in sector Sx node u has a unique neighbor u; which is not a
neighbor of v. Let vg_; and v; be the end nodes of Sk, P, and P, be the
vk-1ux and viug-subpaths of Sj repectively. Since u is strongly adjacent to




H*, it has a neighbor in another sector, say S; having one endnode v; distinct
from vi_; and v;. Let u; be the neighbor of u closest to v, in sector S;. Now
there is a 3PC(ux,v) using paths P,, P, and nodes u; and v;. This 3-path
configuration must contain an unquad hole which must be of smaller length
than H*, which contradicts our choice of H*. O

Lemma 3.8 Every three nodes in A.(H*) have a common neighbor in H*.

Proof: Let U = {u;,us,uz} C A (H*). Note that by Lemma 3.7 every
pair of nodes in A.(H*) have a common neighbor in H*. Assume that there
is no node of H* that is adjacent to all three elements of U. Define the
following sets :

Ay3 = {v € V(H*)|u; and u3 are adjacent to v}
Az = {v € V(H*)|uz and uj are adjacent to v}
A2 = {v € V(H*)|u; and u; are adjacent to v}

By our assumption A;2 N A2z = ¢. Consider the wheel (H*,u;) and the
strongly adjacent node uz. Define A; = {v € A;3] in the two adjacent
sectors of (H*, u;) with the common node v, there are in total an odd number
of neighbors of u3}. (Note that this definition is not symmetric,i.e. A{;isnot
necessarily equal to A%;). Similarily define A},. Now we prove the following
two claims.

Claim 1: Both A}, and A3, contain an odd number of elements.

Proof of Claim 1: We prove that [A{,] is odd. Consider the wheel (H*,u;)
and let Sy,...,S, be the sectors of this wheel, with S; having endnodes s;
and s;41 (where indices are taken modulo n). For every ¢t = 1,...,n let z;
denote the number of neighbors of u; in sector S;. By Lemma 3.7 every
sector of (H*,u,) either has an even number of neighbors of u; or exactly
one neighbor, in which case the neighbor is in A;3. This and the definition
of A{, leads to the following properties:

(a) If s; € AY; then either z;_y = z; = 1, or both z;_, and z; are even.

(b) If s; € A13\ A, then either z;_; = 1 and «; is even, or z;_; is even and
Ty = 1.

(c) If s; and s;41 are not in A;3 then z; is even.
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In the summation ¥, z;, every neighbor of uz which is in A3 is counted
twice, so the total number of neighbors of us on H* is

IN(us) "N V(H")| = Y zi—|Ass (1)
=1
Further we will show that

Z:c; = |A;s\ Aj;| mod 2 (2)

i=1
Now by (1) and (2) we have

IN(us) NV(H")| = (|A1z\ As| — |Arg]) mod 2

—|Aj;] mod 2

Since ug is an odd-strongly adjacent node to H*, we have that |A%,| is
odd.

Now we prove (2). Clearly the parity of }__, z; is the parity of the number
of sectors with an odd number of neighbors of u3. In this paragraph we will
refer to these sectors as odd sectors. By Properties (a), (b) and (c), if S; is
an odd sector, then it has exactly one neighbor of u3 (i.e. z; = 1), and either
8; Or 8;41 is an element of A;3. Each element in A;3 belongs to 0,1 or 2 odd
sectors. Clearly the parity of the number of odd sectors is equal to the parity
of the number of elements in A;3 which belong to exactly one odd sector. By
Properties (a) and (" , A;3\ A; is the set of elements of A,; that belong to
exactly one odd sector. Thus the parity of Y ._; z; is the same as the parity
of Ass | AS,].

This completes the proof of the claim.

Claim 2: Let vy,v, € V(H*)\ A;; be neighbors of uy and uz respectively.
If P is a vyvp-subpath of H*, such that u; and u; have no neighbors in
V(P)\ {v1,v2}, then us has an even number of neighbors on P.

Proof of Claim 2: Suppose that uz has an odd number of neighbors on
P.
Case 1: uj has exactly one neighbor vz on P.
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W.l.o.g v3 # v;. By Lemma 3.7, any two nodes of A.(H*) have a common
neighbor on H*. Let vy, € V(H") be a common neighbor of u; and u;, and
let v;3 € V(H") be a common neighbor of u; and u3z. By our wssumption
A12NA3 = @, 50 V12 # v13. Now thereis a 3PC(v3, u;) where nodes vy, v12, V13
belong to distinct paths of the 3-path configuration, which must contain an
unquad hole of length smaller than H*. This contradicts our choice of H*.

Case 2: uz has an odd number of neighbors, greater than one, on P.

Let vy2 be defined as above. Now there is an odd wheel (C,us), where
C = uy, vy, P,v2,us,v12,u;. Since vy is an odd-strongly adjacent node either
the vyv,5-subpath of H* that does not contain v, or the v,vi,-subpath of H*
that does not contain vy, is of length greater than two. Therefore the wheel
contains an unquad hole of length smaller than H*, which contradicts our
choice of H*. This completes the proof of Claim 2.

Now let s;,...,8, be the neighbors of uy on A*, and t;,...,%t, be the
neighbors of u; on H*. Let P;,..., P be the subpaths of H*, whose endnodes

are consecutive elements of {sy,...,Sn,%1,...,tx} and are such that for every
1 € {1,...,1}, P; and P4, (where indices are taken modulo /) have exactly
one node in common. For every : = 1,...,!, let z; denote the number of

neighbors of uz in P;. Let the endnodes of P; be denoted by p; and p;41
(where the indices are taken modulo [). By Lemma 3.7 and Claim 2 every
P; that does not have an even number of neighbors of u3, has exactly one.
The P;’s with exactly one neighbor of u; are characterized as follows:

(i) If z; = 1 and p; € A{,, then by Claim 2, p;4; is a neighbor of u;. Now
by Property (a) in Claim 1 z;; = 1 and hence by Claim 2, p;_; is a
neighbor of u;. Similarily if z; = 1 and p; € AY;, then z;_; = 1 and
both p;_; and p;4; are neighbors of u;.

(i1) If z; = 1 and p; € A3\ Afs, then by Claim 2, piy; is a neighbor of
u;. Also either by Property (b) in Claim 1 or by Claim 2, z;_, is even.
Similarily if z; = 1 and p; € A3\ AJs, then p;41 is a neighbor of u; and
T;_1 1s even.

In the summation ¥ -, z;, every neighbor of uz which is in A;3 U Ags is
counted twice, so the total number of neighbors of uz on H* is

[IN(us) NV(H™)| = Z z; — |Ays| — |Aas| (3)

=1
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Further we will show that

n

2z = (JAs\ Al + Az \ A3)) mod 2 (4)

i=1
Now by (3) and (4) we have

|N(usz) N V(H")]| (|A13\ A35] — |Aa] + |A23 \ A%5] ~ |Aza]) mod 2

—(|Afs + [A3,]) mod 2

By Claim 1 (|A3;| + |A3;]) is even, which contradicts our choice of us.
Thus A,3 and A3 cannot be disjoint.

Now we prove (4). Clearly the parity of 3", z; is the same as the parity
of the number of sectors with an odd number of neighbors of uj. If P; has an
odd number of neighbors of u3, then it has exactly one neighbor (i.e. z; = 1)
and either p; or p;4 is an element of A;3U Az;. W.lo.g. let p; € A;3. Pair off
P;_, and P, if the only neighbor of u3 in these paths is the node common to
r;-1 and F;, namely p;. By Property (i) and (ii) this is possible if and only if
pi € Aj;U A5, Notice that in this case z;_; + z; = 2 and the sectors together
provide an even count in the sum } 7., z;. Hence the parity of |A;3 U Aj3| is
the same as the parity of |A;3 \ AJ3] + |A23 \ A%}, and so (4) holds.

This completes the proof that A;; and A,z are not disjoint. Hence we
have the proof of the lemma. O

Proof of Property 8.5: If H* is of length 6 or less then the property
clearly holds. Suppose now that H* has length greater than 6. Suppose
W C A.(H") is such that for every proper subset W’ of W there exists a
node of H* which is adjacent to all nodes in W, but there exists no node of
H* adjacent to all nodes in W. By Lemma 3.7 and Lemma 3.8, [W| > 3.
Let W = {w;]i = 1,2,...,p; and let W, = {w;|i = 1,...,p,1 # {}. Now for
l=1,2,...,p, all the nodes in W, have a common neighbor say t;, in H*.
Hence for i = 1,...,p, node t; is adjacent to w;, for j = 1,...,p,j # 1, but ¢,
is not adjacent to w;. Now there exists an odd wheel, w,, i, w3, t;, wq, t3, w,
with center 4, hence it must contain an unquad hole smaller than H*. This
contradicts the choice of H*. O

By symmetry Property 3.6 holds as well.
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Lemma 3.9 Let v be a twin of a node vy in H*, with neighbors v, and v, in
H*. If H* is of length greater than four, then the weights of the paths vy, v, v,
and vy, vg, vy are congruent modulo 4.

Proof: Suppose not. Then the hole v, vy, vy, v,v; is unquad, and of
smaller length than H*, which contradicts our choice of H*. O

Definition 3.10 A tent 7(H,u,v) is a subgraph of G induced by node set
V(H)U {u,v}, where H is a hole of G and u,v are adjacent nodes which are
even-strongly adjacent to H with the following property:

The nodes of H can be partitioned into two subpaths P, and P, containing
the nodes tn N(u) N H and N(v) N H respectively.

A tent 7(H,u,v) is referred to as a tent containing H. We now study
properties of a tent 7(H*,u,v) containing a smallest unquad hole H* and we
assume throughout the paper that the first node, say u in the definition of
a tent 7(H,u,v) belongs to V™ and that node v belongs to V¢. We use the
notation of Figure 1c, where nodes u;, ug, 42, v1, Vg, v2 are encountered in this
order, when traversing H* counterclockwise, starting from u;.

Lemma 3.11 Nodes vy, uy, u; satisfy at least one of the following properties:

o The set A,(H*) is contained in N(vo) U N(u1).
o The set A,(H*) is contained in N(vo) U N(uz).
Nodes ug, vy, v, satisfy at least one of the following properties:
o The set A,(H*) is contained in N(ug) U N(v,).
o The set A, (H") is contained in N(ug) U N(vy).

Proof: We prove the first part. Suppose w € A,.(H*) is not adjacent
to vo. Consider the hole H; obtained from H* by replacing v with node
v of 7(H*,u,v). By Lemma 3.9, H; is unquad, and since it is of the same
length as H*, it also is a smallest unquad hole. Now w cannot be adjacent to
v, for otherwise w is even-strongly adjacent to H;, which violates Property
3.4. Node u is in A,(H;) and has neighbors u4, u and v in Hy. Since w is
not adjacent to v, by Property 3.6 it follows that w is adjacent to u; or u,.
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Furthermore, by Property 3.6 the nodes in A,(H*) which are not adjacent
to vg are either all adjacent to u; or they are all adjacent to u,. Therefore
A.(H") C N(vo) U N(uy) or A,(H*) C N(vo) U N(uz). The second part of
the lemma can be proved similarly. O

Lemma 3.12 Let 7(H*,u,v) and 7(H*,w,y) be two tents, where wy, w; are
the neighbors of w and y,,y, are the neighbors of y in H*. Let wy and yo be
the common neighbors of wy,w,; and y,,ys respectively. Then at least one of
the following properties holds:

e Nodes u; and u; coincide with w, and w,.
e Nodes v, and v, coincide with y; and y,.
o Node ug coincides with y, or y,.

e Node vy coincides with w; or wy.

Proof: Suppose the contrary. Then node u does not coincide with w, node
v does not coincide with y , nodes up and y are not adjacent and nodes v
and w are not adjacent. Let P denote the usv,-subpath of H* not containing
any other neighbor of u or v. Similarly, let  denote the vou,-subpath of H*
not containing any other neighbors of u and v. Now it follows that y; and
y2 are contained in P or (), and w; and w, are contained in P or (). Assume
w.l.o.g. that y; and y, are contained in P. We now prove the following two
claims.

Claim 1: Node y is not adjacent to u and node w is not adjacent to v.

Proof of Claim 1: Suppose that y and u are adjacent. Now there is an
odd wheel uj, P,v1,v,u,u; with center y. This wheel contains an unquad
hole, which is by construction, of smaller length than H*, which contradicts
our choice of H*. Hence y is not adjacent to u. By symmetry, it follows that
w is not adjacent to v. This completes the proof of Claim 1.

Claim 2: Nodes w; and w, belong to Q.

Proof of Claim 2: Suppose not. Then w; and w; belong to P. By
assumption, y; and y; belong to P. Let P’ be the path obtained from P by
substituting y for yo. Now by Claim 1, there is an odd wheel u;, P’,v1,v, 4, uz
with center w. This wheel contains an unquad hole, which is by construction,
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of smaller length than H*. This contradics our choice of H*. Hence w; and
w; belong to Q. This completes the proof of Claim 2.

Now by Claim 1 and Claim 2, there is a 3PC(u,y) that uses at most as
many edges as there are in H*. This 3-path configuration contains an unquad
hole, of smaller length than H*, which contradicts our choice of H*. O

Definition 3.13 A hole H is said to be clean in G if the following three
conditions hold:

(1) No node is odd-strongly adjacent to H.
(ii) Every even-strongly adjacent node is a twin of a node in H.

(iii) There is no tent containing H.

3.2 Induced Subgraphs Containing Clean Unquad Holes

In this section, we show how to create at most m*n* induced subgraphs of
G such that, if G is not balanced, one of the subgraphs, say G;, contains a
smallest unquad hole which is clean in G;.

Definition 3.14 Given a graph F, and a node v € V(F), we denote by
Np(v) the set N(v) N V(F).

We define Fiji to be the induced subgraph of F' obtained by removing the
nodes in Np(j) \ {¢,k} and the nodes in Np(k) \ {j,1}.

PROCEDURE 2

Input: A signed bipartite graph G.

Output: A family £ = {G1,G3,...,Gp}, where p < m*n?, of induced
subgraphs of G such that if G is not balanced, one of the subgraphs in L,
say Gy, contains a smallest unquad hole that is clean in G;.

Step 1 Let £* = {Giji | nodes i, j, k, ! induce the chordless path ¢, j, k,1
in G}.

Step 2 Let £ = {Qi;u | the graph @ is in £*, nodes in {1, j, k, I} belong
to @ and induce the chordless path i, 5, k,{ of @}.

We now prove the validity of Procedure 2.
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Lemma 3.15 If G is not balanced, one of the graphs in L, say G,, contains
an unquad hole H*, smallest in G, and H* is clean in G;.

Proof: Assume G is not balanced. Then G contains a smallest unquad hole
H*. Recall that the sets A.(H*) and A.(H") are defined with respect to G.
Consider the following two cases:

Case 1: There is no tent in G containing H*.

By Property 3.5, there exists a node j € V"(G)NV(H*) that is a common
neighbor of all nodes in A.(H*). Let i,k be the neighbors of j in H* and
let I be the other neighbor of £ in H*. Then the graph G contains H*,
but does not contain any node in A.(H*), and belongs to £L*. By considering
Gijii and applying Property 3.6, it follows that £ contains a graph G, and
H* is clean in G;.

Case 2: The graph G contains a tent 7(H*, u,v).

By Lemma 3.11, the set A,(H*) is contained in N{vg)UN(u;) or in N(vo)U
N(u;z) and the set A.(H*) is contained in N(up)UN(vy) or in N(up)U N(v3).
Assume w.l.o.g. that A,(H") is contained in N(vo) U N(u,).

Suppose A.(H*) is contained in N(ug) U N(v,) and let u* and v* be the
neighbors of u; and v, which are distinct from ug and vy respectively. By
Lemma 3.11 and Lemma 3.12, it follows that the graph Gy.y uou,, Which
belongs to £*, contains H* and satisfies the following properties:

e No node in A.(H*) that is adjacent to uo belongs to Gyey upu;-
e No node in A,(H"*) that is adjacent to u; belongs to Gyey,ugu,-

e The graph Gyey,uqu, does not contain a node w, in a tent 7(H*,w,y),
where w; and w, coincide with u; and u,.

o The graph Gsy,uou, does not contain a node y, in a tent 7(H*,w,y),
where y and ug are adjacent.

As a consequence of Lemmas 3.11 and 3.12, applied to Gysy, you,, it follows
that £ contains an induced subgraph of G, say G, which contains H* and
H* is clean in G;. If A°(H") is contained in N(up) U N(v,), the proof is
identical. O
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3.3 Double Star Decompositions

Definition 3.16 A wheel with three spokes and at least two sectors of length
2 is said to be a short 3-wheel.

In this section, we describe a procedure to decompose a signed bipartite
graph with no short 3-wheel into blocks which are induced subgraphs and
do not contain a double star cutset. While decomposing the graph into
blocks, the procedure also checks the existence of a 3-path configuration that
contains nodes in at least two connected components. But first we give a
polynomial time procedure to check for the existence of a short 3-wheel.

PROCEDURE 1

Input: A signed bipartite graph G.
Output: A short 3-wheel of G or the fact that G does not contain such
a node induced subgraph.

Step 1 Enumerate all distinct subsets of six nodes with three nodes in
V"™ and three nodes in V¢ and declare them as unscanned. Go to Step 2.

Step 2 If all subsets are scanned, G does not contain a short 3-wheel,
stop. Otherwise choose an unscanned subset U. If U induces a 6-cycle C =
a;, az, as, 4, as, dg, a1, having unique chord ajas, go to Step 3. Otherwise
declare U as scanned and repeat Step 2.

Step 3 Remove the nodes in N(az) U N(ag) U N(as) U N(as) \ {a1,a3}.
If a; and a3 are in the same connected component, then a short 3-wheel
with spokes aja;, aza3, azas is identified, stop. If not, remove the nodes
in N(a;) U N(az) U N(a3) U N(as) \ {as,a6}. If a4 and ag are in the same
connected component, then a short 3-wheel with spokes asaz, asa4, asa¢ is
identified, stop. Otherwise declare U as scanned return to Step 2.

Remark 3.17 The complezity of this procedure is of order O(mn?).

Now we describe a procedure to perform double star decompositions.

PROCEDURE 3

Input: A signed bipartite graph F not containing a short 3-wheel or an
unquad hole of length 4.
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Output: Either a 3-path configuration is detected (hence F is not bal-
anced) or a list of undominated signed induced subgraphs Fy,..., F;,..., F,
of F, where ¢ < |VS(F)!|VT(F)]* < m?n? is constructed with the following
properties:

e The graphs F,..., F},...,F, do not contain a double star cutset.

o If the input graph F contains a clean unquad hole, then one of the
graphs in the list, say F;, contains an unquad hole of F' which is clean
in F;.

Step 1 Delete dominated nodes in F' until no such node exists. Let
M={F}, T =0.

Step 2 If M is empty, stop. Otherwise remove a graph R from M.
If R has no double star cutset, add R to 7 and repeat Step 2. Otherwise,
let S = Np(u)U Ng(v) be a double star cutset of R. Let Ry,..., R; be the
connected components of R\ S, let R},..., R} be the corresponding blocks,
i.e. R is induced by V(R;)U S. Go to Step 3.

Step 3 Consider every pair of nonadjacent nodes u, and v, such that
node u, is adjacent to u and node v, is adjacent to v. If both u, and v,
have neighbors in two distinct connected components of R\ S, there is a
3PC(up,v,) and F is not balanced. Otherwise go to Step 4.

Step 4 From each block R}, remove dominated nodes in (N(u)U N(v))\
{u, v}, until no such node exists. Now remove further any dominated node
until the block becomes undominated.

Add to M all the undominated blocks that contain at least one chordless
path of length 3. Go to Step 2.

Remark 3.18 If a node w € (N(u) U N(v)) \ {u,v} belongs to the undomi-
nated block R} at the end of Step 4, then w is adjacent to at least one node
in the connected component R;.

Before proving the validity of Procedure 3, we need the following defini-
tion:

Definition 3.19 Let G be a signed bipartite graph containing a hole H.
Then C(H) = {H; | H; is obtained from H by a sequence of holes H =
Ho, Hy,...,H;, where H; and H;_y, for j =1,2,...,1, differ in one node }.
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Lemma 3.20 Let G be a signed bipartite graph which contains no unquad
holes of length 4. Let H be an unquad hole in G. If H' and H differ in at
most one node, then H' is unquad.

Proof: Let H' be obtained from H by replacing node u by node v. Let z
and y be the common neighbors of u and v in H. Since G contains no unquad
of length four, the paths z,u,y and z,v,y have the same weight modulo 4.
Thus, H’ is unquad. O

Lemma 3.21 Let G be a signed bipartite graph containing a smallest unquad
hole H*, but not containing a short 3-wheel and not containing an unquad
hole of length 4. If H* is clean in G, then every hole H! in C(H") is clean
inG.

Proof: We prove the lemma by induction: it suffices to show that, if H} is a
hole that differs from H* in only one node, then H; is clean in G.

By Lemma 3.20, H; is an unquad hole of smallest length. By Property
3.4, condition (ii) of Definition 3.13 is satisfied. Hence, if the lemma is false,
condition (i) or (iii) of Definition 3.13 is not satisfied. Therefore we consider
the following two cases.

Case 1: Condition (i) of Definition 3.13 is not satisfied.

Now a node w must be odd-strongly adjacent to H;. Since no node
is odd-strongly adjacent to H*, it follows that w has three neighbors, say
wy, w2, w3 in Hf. Two of these neighbors, say w; and w; must be in H* and,
by Property 3.4, they have a common neighbor, say wp in H*. Since w3 is in
H3 but not in H*, it follows that H} is obtained from H* by replacing some
node u # w;, wy in H* with ws. Let u; and u; be the neighbors of v in H*.
Note that w3 is adjacent to u; and u; and u does not coincide with w, or
wz. Hence u; and u, do not coincide with wy. Now 7(H*, w3, w) is a tent,
contradicting the assumption that H* is clean in G.

Case 2: Condition (iii) of Definition 3.13 is not satisfied.

There must be a tent 7(H;,u,v). We first show the following claim:

Claim: At least one of the nedes uy, uy, vy, v2 does not belong to the hole
H*.

Proof of Claim: Assume not. Since u and v are not in Hy, it follows that
at most one of them is in H*. If u is in H*, then up is not in H* and v is
odd-strongly adjacent to H*. So u is not in H* and, by symmetry, node v is
not in H*.
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Assume that neither u nor v belong to H* and let w # u;,uz,v;,v; be
a node in H* but not in H. Nodes w and u are not adjacent, otherwise
node u is odd-stongly adjacent to H*, contradicting the assumption that H*
is clean. By symmetry, it follows that nodes w and v are not adjacent. Now
7(H*,u,v) is a tent, contradicting the assumption that H* is clean and the
proof of the claim is complete.

By the above claim, one of the nodes u;,us,vy,v; is not in H*. Assume
w.l.o.g. that u, is not in H*. Clearly, node u is not in H*. Node v is not in
H*, otherwise node vy is not in H*, node u, coincides with vp and 7(Hj,u,v)
is not a tent.

Thus the hole Hy is obtained from H* by replacing a node w with us,
where w is adjacent to ug. Let uz in H* be the other neighbor of u,. It follows
that u3 is adjacent to w. Let @ denote the vyuz-subpath of H* not containing
ve. Consider the hole C = u,v, vy, @, u3, w, ug, vy, u. Now the wheel (C,u2)
is a short 3-wheel, contradicting the fact that G does not contain a short
3-wheel. O

Remark 3.22 Assume that the signed bipartite graph F contains a smallest
unquad hole H* that is clean in F. If F does not contain a short 8-wheel and
it does not contain an unquad hole of length 4, then an undominated graph

obtained from F by deleting all the dominated nodes contains a clean unquad
hole in the family C(H*).

Lemma 3.23 Let F be a signed bipartite graph satisfying the following prop-
erties:

e The graph F does not contain a short 3-wheel.

o The graph F does not contain an unquad hole of length 4.

o The graph F contains a smallest unquad hole H* that is clean in F.
Then the output of Procedure 8 is one of the following:

e A 3-path configuration is detected in Step 3.

o One of the undominated blocks, say F;, obtained as ouput of Procedure
8, contains an unquad hole in C(H™).
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Proof: Let S = N(u) U N(v) be a double star cutset of F. Let Fy,..., F;
be the connected components of F'\ S and Fy,..., F} be the corresponding
blocks. We now show that an unquad hole H' € C(H") is contained in some
block F} obtained at the end of Step 3. There are three cases to consider.

Case 1: Both nodes u and v belong to H*.

Let u; and v, in H* be the other neighbors of u and v respectively. Now
the nodes in V(H*) \ {u,v,u;,v1} are in some connected component F; and
F} contains H".

Case 2: Either node u or node v is in H*.

Assume w.lo.g. that u is in H* and v is not in H*. Let u; and u;
be the neighbors of u in H*. Note that v can have at most one neighbor
distinct from u in H*. Suppose v does not have any neighbor other than u
in H*. Then the nodes in the set V(H*)\ {u,u;,us} are in some connected
component F; and F?* contains H*. Suppose v has one other neighbor, say
vy, in H*. Now v; and v must have a common neighbor, say u;, in H*. Now
the nodes in the set V(H*)\ {v1,u,u1,u2} are in some connected component
F; and it follows that F* contains H*.

Case 3: Neither u nor v belongs to H*.

Assume w.l.o.g. that [N(u) N V(H*)| < [N(v) N V(H*)| There are three
subcases to consider:

Case 3.1: The set N(u) N V(H") is empty.

If IN(v)N V(H*)| = 0 or 1, the unquad hole H* is preserved in some
block F}*. Suppose now that N(v)NV(H*) = {v,,v;}. Let vo be the common
neigbor of vy and v, in H*. Now the nodes in V(H*) \ {vo, v1,v,} will be in
some connected component F;. If vg is in F;, then the block F}* contains H*.
If vo is not in F;, let H” be obtained from H* by replacing vo with v. Now
H" belongs to C(H*) and the block F;* contains H".

Case 3.2: N(u)NV(H*) = {us}.

Now |[N(v)NV(H*)| =1 or 2. Suppose N(v)NV(H*) = {v1}. If u; and
v, are adjacent in H*, then H* is preserved in some block F?. Suppse u;
and v; are not adjacent. Let P and @) be the two u;v,-subpaths of H*. The
nodes in V(P) \ {u;,v1} will be in some connected component F; and the
nodes in V(Q) \ {u1,v1} will be in some connected component F;. If the two
connected components coincide, H* is preserved in F;". If the two connected
components do not coincide, there is a 3PC(u,,v1) and Step 3 in Procedure
3 detects this 3-path configuration.
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Suppose N(v) N V(H*) = {v1,v2}. Let vy be the common neighbor of
v; and vy in H*. Scale at v, and v; to get the edges vv, and vv, to have
weight +1. Now since F' does not contain an unquad hole of length 4, the
weight of the path v;,vg, vz is congruent to 2 mod 4. Now scale at u and u,
to get the edges uv and uu, to have weight +1. Let P be the u,v,-subpath
of H* that does not contain vz, and let @ be the u,v;-subpath of H* that
does not contain v,. w(P) and w(Q) are either congruent to 1 or 3 mod 4.
Since w(vy, vo, v2) = 2 mod 4, w(P) # w(Q) mod 4. Now if u; is not adjacent
to vy or vs, then either v,u,u;, P,v;,v or v,u,u;, Q, v, v is unquad and of
smaller length than H*. Suppose u; and v, are adjacent. Now the nodes in
V(H*) \ {u1,v1,v0,v2} will be in some connected component F;. If vy is in
the same connected component F; then H* is preserved in F?. Suppose vg is
not in the same connected component F;. Let H” be obtained from H* by
replacing vo with v. Now H” belongs to C(H*) and the block F* contains
H",

Case 3.3: N(u) NV (H*) = {u1,uz}.

Now N(v)NV(H*) = {v1,v2}. Let ug be the common neighbor of u; and
uz in H* and let vy be the common neighbor of v; and v, in H*. If ug is
not adjacent to v and v is not adjacent to u there is a tent 7(H*,u,v). So
assume w.l.0.g. that up coincides with »;. Then v, is adjacent to u, and H*
is preserved in some block F}.

Thus in all cases some block F}* contains the unquad hole H* or an unquad
hole H" in C(H*) . Now by Lemma 3.21 the unquad hole H" is clean in F and
hence H” clean in F?. By Remark 3.22 the undominated graph F; defined in
Step 4 of Procedure 3 must contain an unquad hole in C(H*). Repeating the
same argument for every undominated block F;, which contains an unquad
hole in the family C(H*) and is added to the list M, the lemma follows. O

Lemma 3.24 The number of induced subgraphs in the list T produced by
Procedure 3 is bounded by |V¢(F)|*|V"(F)[%.

Proof: Let S = N(u)U N(v) be a double star cutset of F. Let F,..., F; be
the connected components of F' \ S and let Fy,..., Fy* be the corresponding
undominated blocks. We prove the following two claims.

Claim 1: No two distinct undominated blocks contain the same chordless
path of length 3.
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Proof of Claim 1: Suppose by contradiction that a chordless path P =
a, b, c,d belongs to two distinct undominated blocks F}" and F;. Then {e,b,c,
d} € Np(u)U Np(v). There are three cases to consider.

Case 1: Both nodes u and v belong to {a, b, c,d}.

Node d cannot coincide with u for otherwise a and d are adjacent and P
is not a chordless path. Similarly d does not coincide with v and a does not
coincide with u or v. Hence we can assume that « = b and v = ¢. From Step
4 of Procedure 3 it follows that node a has at least one neighbor in each of
the connected components F; and F; for otherwise it would have been deleted
from one or both the undominated blocks F;" and F7. Similarly node d has
at least one neighbor in each of the connected components F; and F;. Now
Step 3 of Procedure 3 detects a 3-path configuration.

Case 2: Either u or v belongs to {a, b, ¢, d}.

The same argument used in Case 1 shows that node u coincides with b
or ¢. Assume w.l.o.g. that u and b coincide. Now @ and ¢ are neighbors of
u, d is adjacent to v and both a and d must have at least one neighbor in F;
and F;. Again Step 3 of Procedure 3 detects a 3-path configuration.

Case 3: Both u and v do not belong to {a,b,c,d}.

As in the previous cases both a and d must have at least one neighbor in
F;, at least one neighbor in F; and Step 3 of Procedure 3 detects a 3-path
configuration. This completes the proof of Claim 1.

Claim 2: The graph F contains at least one chordless path of length 3
which is not contained tn any of the undominated blocks F}.

Proof of Claim 2: Each of the connected components Fj,..., F; must
contain at least two nodes, since F is an undominated graph. At least one
node in F; must be adjacent to a node in Ng(u) U Np(v). Assume w.l.o.g.
that node p; in F; is adjacent to a neighbor of v, say d;. Suppose now no
node in F; is adjacent to a node in N(u). Then by Step 4 of Procedure 3, the
undominated block F;* does not contain any neighbor of u other than v. This
in turn implies that in the same step node u would have been deleted from
F*. Now P = p;,d;,v,u is a chordless path of length 3 in F but P is not in
any of the undominated blocks Fy,..., Fy. So a node in F; must be adjacent
to a node, say s;, which is a neighbor of u. Repeating the same argument for
j = 1,...,t, it follows that each connected component F; contains a node,
say wj, which is adjacent to a node, say s; € Np(u). Suppose now s; has
a neighbor, say ¢ in a connected component Fj, distinct from F;. Let q be
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a neighbor of g in Fi. Then P = q,g,s;,w, is a chordless path of length 3
which is contained in F but not in any of the undominated blocks £y, ..., F.

Suppose now that s; does not have any neighbor in a connected com-
ponent, say F;. Then in Step 4 of Procedure 3, node s; is deleted from
the undominated block F*. Now the path wy, s, u,s; is a chordless path of
length 3 which is contained in F but not in any of the undominated blocks
Fy, ..., F}. This completes the proof of Claim 2.

Every undominated block that is added to the list M in Step 4 of Proce-
dure 3 contains a chordless path of length 3. Hence every undominated block
that is added to the list 7 in Step 2 contains a chordless path of length 3. By
Claim 1, the same chordless path of length 3 is not in any other undominated
block that is added to the list 7. By Claim 2, it follows that the number of
double star cutsets used to decompose the graph F with Procedure 3 is at
most [VS(F))}|V7(F)|®. Hence the lemma follows. D

4 6-Join Decompositions

In this section we describe a procedure to decompose a signed bipartite graph
into blocks that do not contain a 6-join. We also show that if the graph does
not contain an extended star cutset then neither do the undominated blocks.

PROCEDURE 4

Input: A signed bipartite graph G, not containing an unquad hole of
length 4 or 6, or a short 3-wheel.

Output: A list of signed bipartite graphs M = {D,, D,, ..., D,}, satis-
fying the following properties:

e No graph in the list M contains a 6-join.

e The graph G is balanced if and only if all the graphs in the list M are
balanced.

Step 1 Let £ = {G}, and M = 0.

Step 2 If £ = @, stop. Otherwise remove a graph R from £. Enumerate
all distinct subsets of six nodes with three nodes in V"(R) and three nodes
in V°(R) and declare them as unscanned. Go to Step 3.
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Step 3 If all six node subsets are scanned, add R to M and return to
Step 2. Otherwise choose an unscanned subset U and declare it scanned.
If the nodes in U do not induce a 6-hcie ay,a,,...,a6,a; in R, then repeat
Step 3. Otherwise, let A; = {q;} forevery j =1,...,6, T = {a;,a3,a5} and
B = {a;,a4,a6}. Let S = V(R)\ (T U B) and go to Step 4.

Step 4 Apply to the nodes in S, the following rules in order, repeatedly,
until no further application is possible.

Rule 1: If u is adjacent to at least one node in each of A;, A;42, Aipq,
where ¢ is odd, then if u is adjacent to a node in B then go to Step 3, else
put u in T and remove it from S.

Rule 2: If u is adjacent to at least one node in each of A;, A;y,, A4,
where ¢ is even, then if u is adjacent to a node in T then go to Step 3, else
put v in B and remove it from S.

Rule 3: If u is adjacent to a node in A;, “here 7 is odd, but not to any
node node in A;;2 U Ai44, then if u is adjacent to a node in B then go to
Step 3, else put u in T and remove it from S.

Rule 4: If u is adjacent to a node in A, where 1 is even, but not to any
node node in A;42 U Ai4q, then if u is adjacent to a node in T then go to
Step 3, else put u in B and remove it from S.

Rule 5: If u is adjacent to a node in A; and a node in A;,,, where ¢ is
odd, anc :is adjacent to a node in T, then if u is also adjacent to a node in
B then go to Step 3, else put u in T’ and remove it from S.

Rule 6: If u is adjacent to a node in A; and a node in A;4,, where ¢ is
even, and u is adjacent to a node in B, then if u is also adjacent to a node
in T then go to Step 3, else put u in B and remove it from S.

Rule 7: If u is adjacent to a node in B, a node in A; and a node in A;,3,
where 1 is odd, then if there exists a node in A; U A;;, to which u is not
adjacent, then go to Step 3, else put u in A;4; and in B and remove it from
S.

Rule 8: If u is adjacent to a node in T, a node in A; and a node in Ao,
where i is even, then if there exists a node in A; U A;;2 to which u is not
adjacent, then go to Step 3, else put u in A;4; and in T and remove it from
S.

Rule 9: If u is adjacent to a node in A; and a node in A4, where 7 is odd,
but u is not adjacent to some node in A; U A4, then if u is also adjacent to
a node in B then go to Step 3, else put u in T" and remove it from S.
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Rule 10: If u is adjacent to a node in A; and a node in A;;2, where i
is even, but u is not adjacent to some node in A; U A;;2, then if u is also
adjacent to a node in T then go to Step 3, else put u in B and remove it
from S.

Rule 11: If u is not adjacent to any node in (JS_, A;, but it is adjacent to
a node in T, then if u is also adjacent to a node in B then go to Step 3, else
put u in T and remove it from S.

Rule 12: If u is not adjacent to any node in US_, A;, but it is adjacent to
a node in B, then if u is also adjacent to a node in T then go to Step 3, else
put u in B and remove it from S.

Step 5 Remove all nodes in S that are adjacent to every node in A; U Ag
and put them in A, and in T. Remove all nodes in S that are adjacent to
every node in A, U A; and put them in A3 and in T. Remove all nodes in
S that are adjacent to every node in A4 U Ag and put them in A5 and in T'.
Now G(US_, A;) defines a 6-join that separates T from B.

Step 6 Construct the blocks R; and R;. Delete all dominated nodes and
add the blocks to £. Return to Step 2.

Remark 4.1 The rules in Step 4 of Procedure 4 are forcing in the sense that
if any of them holds, either node u must be removed from S and added to one
of the sets T, B, Ay, Ay, A3, Ay, As, Ag if there is a 6-join, or it is detected
that no 6-join is possible. In Step 5 of Procedure 4 the nodes that remain in
S are of the following two types:

® a node u is not adjacent to any node in TU B

e a node u is adjacent to every node in A; U A;y2, for some 1, but it is
not adjacent to any node in (T U B) \ (A; U Aiy2).

Now by Step § it follows that G(US_, A;) defines a 6-join. Moreover the
graphs in list M do not contain a 6-join.

Lemma 4.2 Let G be a signed bipartite graph not containing an eztended
star cutset, a short 3-wheel, and not containing an unquad hole of length 4
or 6. Let M = {D,,D,,...,D.} be the list of graphs produced from G by
Procedure {. Then r is O(n + m) and the graphs in M do not contain an
eztended star cutset or a 6-join. Moreover G is balanced if and only if all the
graphs in the list M are balanced.




Proof: Let G be a signed bipartite graph, not containing an extended
star cutset, or a short 3-wheel, or an unquad hole of length 4 or 6, that is
decomposed by Procedure 4. Suppose A; U AU A3U A4 U A5 U Ag is a 6-join
of G that separates G (which contains A;, ¢ odd) from G; and let G} and G3
be the corresponding blocks obtained in Step 6 (after deleting all dominated
nodes). We now show that G} and G7 do not contain an extended star cutset.
Suppose G} contains an extended star cutset S = (z; X;Y; N).

Case 1: a;,aq4 or ag is an isolated node in the graph G'\ S.

W.lo.g. let a; be isolated. Then A, U A3 C §, which implies there is a
node in G} which dominates a;. But then a; would have been deleted from
G3.

Case 2: y,z € V(G}) \ {a2,a4,a6} are such that y and 2z belong to
separate components in Gj \ S.

Now we will construct from S an extended star §* = (z*, X*,Y™*, N*) in
the original graph. If any of a3, a4,a¢ are in S\ X then replace them by the
corresponding sets Az, A4, Ag in the original graph. Let X* = X'\ {a2, a4, a6}
If az,a4 or ag is z, then add the corresponding set A;, A4 or Ag to X* and
label one of the nodes from the set z*. If a; is in X \ {z}, then if Y contains
at least two nodes from A;, let Y™ contain exactly these nodes, add the nodes
in (Y\Y*)UN to N*, and add A; and As to X*. If Y contains at least two
nodes from A3 but not from A,, let Y* contain exactly these nodes, add the
nodes in (Y \Y*)U N to N*, and add sets A; and A4 to X*. Otherwise add
A; to X*. Perform similar modifications to S to obtain S* if a4 € X \ {z}
or as € X \ {z}.

By the above construction S* is an extended star.

Claim: S* is an extended star cutset in the original graph.

Proof of Claim: Assume that S* is not an extended star cutset in the
original graph. Then there exists a path P in G \ S* which connects y and
z. This path must use two nodes a; € A; and a} € A; where ¢ # j and ¢ and
7 are even. W.l.o.g. let us assume it uses aj, € A; and a, € A;. But then a;
and a4 are in different components in G} \ S. W.l.o.g. let there exist a path
from a; to y and from a4 to z in G} \ S. Since ¢; and a4 are not connected
A3 C S. Also one of either Ay C S or A5 C S or ag € S. But ag can only
be in S if it is in X \ {z} since it is not adjacent to any node in As. If Y
contains at least one node from each of A; and As, then z is the center of a
short 3-wheel. Thus, Y contains two nodes from either A or As, then by the
construction of S* one of either A4 or A; is also in X*. But then a} and aj
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cannot be connected in G \ S* which contradicting the existence of P. This
completes the proof of the Claim.

But the above claim contradicts our assumption that G did not contain
an extended star cutset.

Hence G} does not contain an extended star cutset. By symmetry, G5
does not contain an extended star cutset. Now repeating the same argument
for every graph that is added to the list £, it follows that every graph in the
list M produced by Procedure 4 does not contain an extended star cutset.
By Remark 4.1, the graphs in the list M do not contain a 6-join. Now
Remark 3.22 and a repeated application of Theorem 2.7 shows that if G is
balanced, all the graphs in the list M are balanced and if G is not balanced
at least one graph in the list M is not balanced.

In order to complete the proof of the lemma we now show that the number
of graphs in the list M is O(n + m). This is seen by observing that in each
6-join decomposition the sum of the nodes in the two blocks is exactly 6 more
than the number of nodes in the original graph. This completes the proof of
the lemma. O

5 2-Join Decompositions

In this section we describe a procedure to decompose a signed bipartite graph
G into blocks that do not contain a 2-join. We also show that if G does not
contain an extended star cutset or a 6-join then neither do the final blocks.

PROCEDURE 5

Input: A signed bipartite graph G not containing an unquad hole of
length 4.

Output: A list of signed bipartite graphs N = {B;, By, ..., B, }, where
r is O(n 4+ m), satisfying the following properties:

e No graph in the list /' contains a 2-join.

o The graph G is balanced if and only if all the graphs in the list A are
balanced.

Step 1 Let £ = {G},and N = 0.
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Step 2 If £ = 0, stop. Otherwise remove a graph R from £. Enumerate
all distinct subsets of four nodes ¢;,¢; € V¢, ry,r, € V7 such that ¢;r; and
cpr, are edges but ¢;r; and cor; are not. Declare this set of four nodes as
unscanned. Go to Step 3.

Step 3 If all subsets of four nodes in V(R) are scanned, add R to N and
return to Step 2. Otherwise choose an unscanned subset {¢;ry,c;r2} and go
to Step 4.

Step 4 Define A = {1}, B = {n}, D = {e}, F = {r2}. Apply
Procedure 6 to check whether there exists a 2-join E(Kap) U E(Kpigr),
where AC A/, BC B',DC D', FC F'. If no such 2-join exists, go to Step
5. If a 2-join has been identified, construct the blocks R} and Rj, add them
to the list £ and return to Step 2.

Step 5 Define A = {1}, B = {n1}, D = {r2}, F = {c2}. Apply
Procedure 6 to check whether there exists a 2-join E(Karp) U E(Kpifr),
where AC A, BC B, D C D', F C F'. If no such 2-join exists, declare
U as scanned and return to Step 3. If a 2-join has been identified, construct
the blocks R} and Rj, add them to the list £ and return to Step 2.

PROCEDURE 6

Input: A bipartite graph R and node disjoint bicliques K45 and Kpr
such that no node in A is adjacent to a node in D and no node in B is
adjacent to a node in F.

Output: Either a 2-join £* = E(Kap) U E(Kppr), where A C A,
B C B, D C D, F C F'is identified, or no such 2-join exists.

SteplLlet S=0and T=V(R)\(AUBUDU F). Go to Step 2.

Step 2 Apply the Rules 1 to 11 to nodes in T repeatedly until no further
application is possible.

Rule 1 1f u is adjacent to a node in A and a node in F’, there is no 2-join
E(KAIBI) U E(Kp).

Rule 2 If u is adjacent to a node in B and a node in D, there is no 2-join
E(Kap')U E(KpiF).

Rule 8 If u is adjacent to a node in S, a node in B and a node in F, there
is no 2-join E(KAIBI) U E(KDIFI).

Rule 4 If u is adjacent to a node in S and there exist two nodes fi, f; € F
such that u and f; are adjacent but u and f, are nonadjacent, there is no
2-join E(KAIBI) U E(KDIF:).
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Rule 5 If u is adjacent to a node in S and there exist two nodes b, b, € B
such that v and b, are adjacent but u and b, are nonadjacent, there is no
2-join E(Kap') U E(Kpipr).

Rule 6 If u is adjacent to a node in A and a node in D, remove u from T
and add u to S.

Rule 7If u is not adjacent to any node in AU B and there exist two nodes
dy,d2 € D such that u and d; are adjacent but u and d; are nonadjacent,
remove u from T and add it to S.

Rule 81f u is not adjacent to any node in DU F and there exist two nodes
a1,a; € A such that u and a; are adjacent but u and a; are nonadjacent,
remove u from T and add it to S.

Rule 9 If u is adjacent to all nodes in F and to at least one node in S,
but u is not adjacent to any node in B, remove u from T and add it to D.

Rule 10 If u is adjacent to all nodes in B and to at least one node in S,
but u is not adjacent to any node in F, remove u from T and add it to A.

Rule 11 If u is adjacent to at least one node in S, but u is not adjacent
to any node in BU F', remove u from T and add it to S.

Step 3 Remove from T every node u that is adjacent to all nodes in
A and add u to B. Remove from T every node v that is adjacent to all
nodes in D and add vto F. Let A=A, B =B, D' =D and F' = F. Now
E(K 45 )UE(Kp ) defines a 2-join, separating A'UD’'US from B'UF'UT.

Lemma 5.1 After Step 2 of Procedure 6 no node in T is adjacent to a node
in S, and if a node u € T is adjacent to a node in AU D then u is one of
the following two types:

(i) u is adjacent to every node in A, but no node in DU F, or

(i1) u is adjacent to exery node in D and no node in in AU B.

Proof: Rules 3,4,5 and 11 characterize all nodes that are in T and adjacent
to a node in S. So after Step 2 of Procedure 6 has been completed no node
in T is adjacent to a node in S. By Rules 1 and 6, if a node u € T is adjacent
to a node in A, then it is not adjacent to any node in D U F. Now by Rule
8 u is adjacent to every node in A. Similarily, by Rules 2 and 6, if a node
u € T is adjacent to a node in D, then it is not adjacent to any node in
AU B. Then by Rule 7 u must be adjacent to all nodes in D. O
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Remark 5.2 The rules in Step 2 of Procedure 6 are forcing in the sense that
if any of them holds, node u must be removed from T and added to one of
the sets A, D or 5 if there is a 2-join E(Kap')U E(Kpip'), where A C A,
BCB,DCD, FCF' Rulestob5 detect a contradiction that arises as
a consequence of removing u from T and adding to one of the sets A, D or
S. Now by Lemma 5.1 and Step 3 it follows that the bicliques identified by
Procedure 6 define a 2-join. Moreover the graphs in the list N do not contain
a 2-join.

Lemma 5.3 Let G be a signed bipartite graph not containing an ertended
star cutset, a 6-join :nd not containing an unquad hole of length 4. Let
N ={B,,B,,...,B.} be the list of graphs produced from G by Procedure 5.
Then r is of O(n + m) and the graphs in N’ do not contain an eztended star
cutset, a 6-join or a 2-join. Moreover if G is balanced all the graphs in the
list N are balanced and if G is not balanced at least one graph in the list N
is not balanced.

Proof: Let G be a signed bipartite graph, not containing an extended
star cutset or a 6-join, that is decomposed by Procedure 5. Suppose E* =
E(K48)UE(Kpr) is a 2-join of G that separates G, from G and let G} and
G be the corresponding blocks.

Notice that the blocks contain no holes of length less than 7, which use
the paths P,z and P,;. Hence if the original graph did not contain a 6-join,
neither can the two blocks.

We now show that G} and G} do not contain an extended star cutset.
Suppose G7 contains an extended star cutset S = (z; X;Y; N). Let the nodes
in A and D belong to G and let nodes b and f in Gj represent the nodes in
B and F respectively. The nodes b and f are connected by a path P,y which
is of length 4 or 5. There are four cases to consider.

Case 1: Node z coincides with b or f.

Assume w.l.o.g. that z coincides with b. Since Py is of length at least 4
and E* defines a 2-join, it follows that node f and the nodes in D are not in
S. Hence S separates the nodes in D from a node in G; \ A. If X = {z}, then
S is a star cutset of G} separating the nodes in D from a node in Gy \ A. Now
every node in B defines a star cutset of G separating the nodes in D from a
node in G; \ A. Hence X must contain at least two nodes. Then at least two
nodes in A are contained in Y. Let z* be anode in B . Let N* = Ng(2*)\Y
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and X* = (X \ {z})U B. Now S$* = (z*, X*, Y, N*) defines an extended star
cutset of G separating the nodes in D from a node in G, \ A.

Case 2: Node z is an intermediate node of Pyy.

At least one of the nodes b or f is not in S since Py is of length at least
4. Assume w.l.o.g. that node f is not in S. Now S is a star cutset of G}
separating the nodes in D from a node in G; \ A. Then node b must be a
star cutset of G} separating the nodes in D from a node in G; \ A and we
are in Case 1.

Case 3: Node z isin A or in D.

Assume w.l.o.g. that z is in A. Now node f & X since E* defines a
2-join. Then S is an extended star cutset of G} separating f from a node in
G1\ S. If node b is not in S, it follows that S is an extended star cutset of
G separating the nodes in F from a node in G; \ S. Suppose now node b is
in S. Then if bisin N, let N* = (N \ {b}) U B. Now S* = (2, X,Y,N*) is
an extended star cutset of G separating the nodes in F from a node in G;.
Otherwise b is in Y, which means that X C A. Let Y* = (Y \ {b}) U B, and
now S* = (z, X, Y™, N) is an extended star cutset of G seperating the nodes
in F from a node in G;.

Case 4: Node z is in G; but not in AU D.

Now node b or f is not in S. Assume w.l.o.g. that f is not in S. Then S
is an extended star cutset of G} separating node f from a node in G, \ S. If
node b is not in S it follows that S is an extended star cutset of GG separating
the nodes in F from a node in G; \ S. Suppose now node b is in S. Then
b must be in X and Y C A and it must contain at least two nodes. Let
X*=(X\{b})UB. Now S* = (z,X*,Y, N) is an extended star cutset of G
separating the nodes in F from a node in G;.

Hence G does not contain an extended star cutset or a 6-join. By symme-
try, G does not contain an extended star cutset or a 6-join. Now repeating
the same argument for every graph that is added to the list £, it follows that
every graph in the list A produced by Procedure 5 does not contain an ex-
tended star cutset or 6-join. By Remark 5.2, the graphs in the list A do not
contain a 2-join. Since none of the graphs created in the intermediate steps
of Procedure 5 contain a biclique cutset, a repeated application of Theorem
2.4 and Remark 2.3 shows that if G is balanced, all the graphs in the list A/
are balanced and if G is not balanced at least one graph in the list A" is not
balanced.
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In order to complete the proof of the lemma we now show that the number
of graphs in the list M is of O(n+m). This is easily seen by observing that in
each 2-join decomposition the sum of the number of nodes in the two blocks
is at most 12 more than the number of nodes in the original graph. If we
stop doing 2-join decompositions when the size of the blocks is smaller than
24 then the number of blocks created is only linear in the number of nodes
in the original graph. This completes the proof of the lemma. O

6 Recognition Algorithm and its Validity

We now give the recognition algorithm, prove its validity and polynomial
time bound.

ALGORITHM

Input: A signed bipartite graph G.
Output: The signed graph G is identified as balanced or not balanced.

Step 1 Check whether G contains an unquad hole of length 4 or 6. Apply
Procedure 1 to check whether G contains a short 3-wheel. If so, G is not
balanced, otherwise go to Step 2.

Step 2 Apply Procedure 2 to create at most m*n? induced subgraphs
of G, say G,...,Gi,...,Gp such that, if G is not balanced, at least one of
the induced subgraphs created, say G;, contains an unquad hole of smallest
length which is clean in G;.

Step 3 Apply Procedure 3 to each of the induced subgraphs G,,...,G;,...
to decompose them into undominated induced subgraphs Fi,...,Fj, ..., F,
that do not contain a double star cutset. While decomposing a graph with
a double star cutset N(u)U N(v), Procedure 3 also checks the existence of
a 3-path configuration containing nodes u and v and nodes in two distinct
connected components resulting from the decomposition. If such a 3-path
configuration is found, then G is not balanced, otherwise go to Step 4.

Step 4 Apply Procedure 4 to each of the induced subgraphs F3, ..., F},...,

to decompose them into undominated induced subgraphs Ds,...,Dg,..., D,
that do not contain an extended star cutset or a 6-join. Go to Step 5.

Step 5 Apply Procedure 5 to each of the subgraphs D,,...,Dk,..., D, to
decompose them using 2-joins into blocks B,...,Bi,..., B, not containing
an extended star cutset, 6-join or a 2-join.
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Step 6 Test whether any of the blocks B,,...,B,..., B, that are not
Ry contains an unquad cycle. If so, then the signed graph G is not balanced,
otherwise G is balanced.

Remark 6.1 An algorithm to test whether a signed bipartite graph contains
an unquad cycle can be found in [{] or [6]. Hence the details of Step 6 are
omitted in this paper.

Theorem 6.2 The running time of the algorithm described in Section 3 is
bounded from above by a polynomial function of the cardinalities m and n
of the node sets V™ and V° respectively. Moreover the algorithm correctly
identifies a signed bipartite graph G as balanced or not.

Proof: The rvunning time of each of the procedures in the algorithm has
been shown in its respective section to be bounded from above by a poly-
nomial function of m and n. Testing wether a block is R;o can be done in
constant time. The algorithms in 4] and [6], to check whether a signed bipar-
tite graph contains an unquad cycle, are bounded from above by a polynomial
function of m and n. Hence the running time of the algorithm described in
Section 3 is bounded from above by a polynomial function of m and n.

Suppose G is balanced. Clearly G cannot contain a short 3-wheel or
a 3-path configuration. All the induced subgraphs of G are balanced and
the graphs produced by Procedures 2 and 3 are balanced. Consequently, by
Lemma 4.2 and by Lemma 5.3, all the graphs in the final list A produced
by Procedure 5 are balanced and do not contain an extended star cutset,
a 6-join, or a 2-join. Now by Theorem 2.2 every graph in the list N does
not contain an unquad cycle. Then Step 5 of the algorithm identifies G as
balanced.

Suppose G is not balanced. If G contains a short 3-wheel, Step 1 of the
algorithm identifies G as not balanced. Suppose G does not contain a short
3-wheel. Clearly the signed bipartite graph G contains an unquad hole of
smallest length. Now by Lemma 3.15 one of the induced subgraphs of G,
say G, in the list produced by Procedure 2 contains an unquad hole H*, of
smallest length, which is clean in G;. Now G; is one of the graphs considered
for double star decompositions by Procedure 3. By Lemma 3.23, Procedure
3 either detects a 3-path configuration or one of the undominated blocks, say
F, in the final list produced by Procedure 3 contains an unquad hole in the
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family C(H*). In the former case clearly G is not balanced. In the latter

case Procedures 4 and 5 preserve a clean unquad hole in the graph. Now by 5
Lemma 4.2 and Lemma 5.3 one of the blocks, say B;, produced by Procedure

5 is not balanced. Clearly the block B; contains an unquad hole and hence

an unquad cycle. Hence Step 5 of the algorithm identifies G as not balanced.

This completes the proof of the theorem. O
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